images of SMC Research 1996

Morphological Image Processing

H.J.A.M. Heijmans

1. INTRODUCTION

Among the major tasks in the field of image processing and analysis are
feature extraction, shape description, and pattern recognition. Such tasks
inherently require a geometry-oriented approach as they refer to geometri-
cal concepts such as size, shape and orientation. However, until recently
the most important tools in image processing were of a probabilistic and
analytic nature, and were based upon, e.g., the correlation of signals and
the frequency analysis of the Fourier spectrum.

Mathematical morphology is an approach to image processing which is
based on set-theoretical, geometrical and topological concepts, and as such
1t 1s particularly useful for the analysis of geometrical structure in an image.
In contrast to the traditional approach using Fourier analysis, morphology
1s highly nonlinear in nature, and poses several challenging mathematical
problems. Below we shall briefly describe the historical development of this
approach, explain some of its basic techniques, and discuss some recent
theoretical developments, with an emphasis on those carried out at CWI.

2. THE NATURE OF MATHEMATICAL MORPHOLOGY
It 1s interesting to have a deeper reflection upon the origin and nature of
mathematical morphology. What 1s 1it? Where does it come from? How
does it operate?

The word ‘morphology’ stems from the Greek words popepn and Aovog

255



256

M. A M. HEjMANS

meaning ‘the study of forms’. The term is encountered in a number of sci-
entific disciplines including biology and geography. In the context of image
processing it 1s the name of a specific methodology designed for the anal-

sixties by two researchers at the Paris School of Mines in Foutainebleau, G.
Matheron [3] and J. Serra [5], who worked on a number of problems in min-
eralogy and petrography. Their main goal was the automatic analysis of the
structure of images from geological and metallurgic specimens. They were
particularly interested in the quantization of the permeability of a porous
medium and the petrography of iron ores. Their investigations ultimately
led to a new quantitative approach in image analysis, nowadays known
as mathematical morphology. During the last two decades, this discipline
has gained increasing popularity among the image processing community
and has achieved the status of a powerful alternative to the classical linear
approach. It has been applied in numerous practical situations, e.g., miner-
alogy, medical diagnostics, histology, industrial inspection, computer vision
and character recognition.

Mathematical morphology has three aspects: an algebraic one, dealing
with 1mage transformations derived from set-theoretical and geometrical
operations, a probabilistic one, dealing with models of random sets applica-
ble to the selection of small samples of materials, and an integral geometric
one, dealing with image functionals. Only the first aspect will be addressed
here.

By 1ts very nature, mathematical morphology is set-based, that is, it
treats a binary image as a set. The corresponding morphological opera-
tors use essentially only four ingredients from set theory: set intersection,
union, complementation, and translation. As a result such operators are
translation invariant; additionally, they are highly nonlinear.

One of the basic intuitions of mathematical morphology is that the anal-
ysls of an image does not reduce to a simple measurement. Instead, it
relies on a succession of operators which transform it in order to make cer-
tain features apparent. Indeed, a picture usually contains an unstructured
wealth of information; in order to analyze it, one has to distinguish mean-
ingful information from irrelevant distortions. One has to extract what is
of interest. In practice this amounts to transformations which reduce the
original 1mage to a sort of caricature. For example, in optical character
recognition, one can simplity the task by first performing a skeletonization
on a binary digital image representing a typed text, which reduces each
connected component to a one-pixel-thick skeleton retaining its shape; this
discards all (useless) information about the thickness of characters, and the
reduced amount of information contained in such an image makes further
recognition steps quicker and easier.
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Figure 1. Opening and closing of a polygon by a disk.

. AN EXAMPLE: OPENINGS
he central 1dea of mathematical morphology is to examine the geometrical
structure of an image by probing it with small patterns, called structurin
elements, at various locations in the image. By varying the size and shape
of the structuring elements, one can extract useful shape information from
the image. This procedure results in image operators which are well-suite
for the analysis of the geometrical and topological structure of an image.
This 1s perhaps best illustrated by discussing one operator in more detail,
the opening, one of the most important operators in daily morphological
ractice. Restricting to binary (i.e., black-and-white) images modelled b
%), the subsets of IR*, we say that the ma ping o : P(R*) — P ]Rz) 1S
an opening if 1t 1s

o increasing: X C Y implies a(X) C «

il

e idempotent: « = (¥ ;

e anti-extensive: a(X) C X.

We discuss three different types of openings here: the structural opening,
the linear opening, and the area opening.

The structural opening requires a structuring element A C R*. It is the
union of all translates of A which are contained inside X:

v

X oA= U{Ah 'h € R° and A4;, C X}.
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Here Aj denotes the translate of A along the vector h. This opening is
lustrated in figure 1, along with its negative, the structural closing by A,
which 1s essentially an opening of the background. A closing operator, say
3, 1s Increasing, idempotent, and extensive (i.e., X C 3(X)).

The linear opening uses a (finite or infinite) collection of bounded line
segments L;, 1 € I, with different directions for structuring elements. It is
defined by

ar(X)=|JXoL;
1l

Finally, the area opening uses the notion of (arc-)connected component. Let
S 2> 0 be a real number, then ag(X) comprises all components of X with
area larger than S. The three different openings are illustrated in figure 2.

Openings are used for different purposes, such as image filtering (see
section 5). Here we discuss a different application, the computation of size
distributions.

Consider the family of structuring elements B, the spheres in IR* cen-
tered at the origin and with radius r > 0. The family of structural openings
o (X) = X orB satisfies the following semigroup property:

vy = v, = v, 1fr > s.

T'his 1s due to the fact that a larger ball can be obtained as a union of smaller
ones. T'his semigroup property forms the basis for a formal definition of a
size distribution. The openings «, formalize the intuitive idea of the sieving
of a binary image according to the size and shape of grains within the
image. As the mesh size of the sieve (the radius r) is increased, more of the
image grains will fall through the sieve and the residual area of the filtered
(sieved) image will decrease monotonically. These residual areas form a size
distribution, called granulometric size distribution, that is indicative of the
image structure. Its derivative is a density function, called the granulometric
size density.

The opening transform of a binary image X C IR is a function F : R* —
IR, whose value F'(h) at the point A represents the radius r of the largest
sphere which contains A and fits entirely inside X . Its histogram corresponds
with the granulometric size density. See figure 3 for an illustration.

4. COMPLETE LATTICE FRAMEWORK

Although, originally, mathematical morphology was developed for binary
images, from the very beginning there was a need for a more general the-
ory. Such a theory should be powerful enough to handle different object
spaces such as the closed subsets of a topological space, the convex sets of
a (topological) vector space, and grey-scale images.
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Figure 2. Three different openings. (a) binary input image (foreground in red): (b) the
structural opening by a 7 x 7 square yellow); (c) linear opening using four line segments
(horizontal, vertical and diagonal) with length 15: (d) area opening with S = 256.

Besides this enormous variation in ob ject spaces there is yet another gen-
eralization which is quite important. It 18, namely, by no means obvious why
morphological operators have to be translation Invariant. In radar imaging,
for example, rotation invariance is more appropriate. Furthermore, there
are a number of situations where perspective transformations enter natu-
rally. Think, for instance, of the problem of monitoring the traffic on a
highway with a camera at a fixed position. It is obvious that in such a con-
figuration the detection algorithms should take into account the distance
between the camera and the ob ject (e.g. a car).

Only recently has it been realized that complete lattices are the right
mathematical framework for a general theory of morphology: see [1. 2, 4,
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Figure 3. Opening transform and size distribution. (a) Grey-scale image; (b) binary im-
age obtained by thresholding; (c) its opening transform; (d) the histogram of grey-values
of the opening transform (which corresponds with the granulometric size density); (e)
the binary image (red), obtained by thresholding the opening transform. In this particu-
lar case the 5-7-11-chamfer metric has been used as an accurate discrete approximation

of the continuous Euclidean distance.
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6]. The main motivation for this generalization is that it unifies a number of
particular examples into one abstract mathematical framework; they help
to prevent the periodic ‘reinvention of the wheel” which happens too often
in applied mathematics and engineering. where ‘new ideas’ are sometimes
particular cases of ‘old ideas’ in pure mathematics. A second motivation
itimately connected to the previous one is that an abstract approach pro-
vides a deeper insight into the essence of the theory (which assumptions
are minimally required to have certain properties?) and links it to other,
sometimes rather old, mathematical disciplines.

The mathematical morphology research group at CWI has made a sub-
stantial contribution to the development of the complete lattice framework
for morphology [1].

. MORPHOLOGICAL FILTERS

5.1. Introduction

Another class of problems dealt with at CWI concerns the construction of
morphological filters. One goal of image filtering may be the enhancement
of the visual quality of a distorted image. More frequently, however, its goal
1s to make the 1image more suitable for subsequent image processing tasks,
such as segmentation.

In mathematical morphology a ‘filter’ is an operator which is increasing
and 1dempotent. Idempotence seems a sensible requirement for a filtering
operation as 1t characterizes the successive stages of a series of transforma-
tions In 1mage analysis. Indeed, if an operation is idempotent, then there
1S no point in repeating it, and so we must do something else, i.e., go to
another stage. Conversely, a stage must produce a clear result, and not stop
halfway:.

Given a filtering operator ¥ which is not idempotent, one often applies
1t until the result does not change anymore. This corresponds to a condi-
tional loop, such as ‘while ... do ...  ; provided such a loop eventually
terminates, 1t implements an idempotent operation. However, in general
there is no guarantee of convergence. At CWI a theory has been developed
which says under what sort of conditions on the operator v, iteration leads
to 1 dempotence. This theory covers all the interesting cases occurring in
practice.

5.2. Alternating sequential filters

By means of illustration we describe one family of morphological filters in
more detail, namely the alternating sequential filters based on rank-order.
This class was ‘invented’ recently by the author. To define it, we need to
introduce some notation and terminology. Denote by Fun(Z*) the class of
erey-scale functions F' : Z° — {0,1,..., N}, where N is an integer.
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igure 4. Morphological filtering: undistorted image; (b) distorted version of (a)
in which about one-third of the pixels are affected by noise; this image is used as input
image F; - (c) Gaussian filtered version of F'; (d) median ps ; and (f) are the
alternating sequential filtered images (Ba)g(F') and (a3)g(F"), respectively. Note that
the linear Gaussian operator blurs the image, whereas the morphological operators are

ble to remove noise without blurring the image.
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Let ., k=1,2,...,n, be a sequence of openings such that

Yy <1 S0 <.

For example, ap may be the structural opening with a (2k + 1) x (2k + 1)
structuring element. Dually, let 3., A = 1,2,...,n, be a sequence of closings
such that

/3.” > [.3.,1___1 e > 51.

SOP——— f AT

Denote by (af3), the composition
(Q"/B)n — @*1‘14;[372,0‘{71—-—1/6-”--1 T a’lﬁl -

The composition (B«), is defined analogously. Now the following result
holds.

Proposition. Under the given assumptions, the operators (a3),, and (Ba),,
. “ g : : :

are morphological filters on Fun(Z~), ¢.e., both operators are increasing and

rdempotent.

The filters (af3),, and (B«),, are called alternating sequential filters. One
particular example will be discussed here. Consider the points 0, p;, p2,
origin; define the rank operator p; (where £ = 1,2,...,9) as tollows: sort,
for a given input image F and pixel x € Z2, the values F(z), F(x+p;), F(x+
p2), ..., F(x+pg) in decreasing order and take as output pi(F')(x) the value
at the &’th position. The operator p;, which returns as output the maximum
of the values F'(x + p;), 1s called dilation, and is denoted by 6. Dually, pg,
which returns the minimum is called erosion, and is denoted by &. The
operator ps is called the median operator. It is evident that

P1L = P2 = - 2 Pg.

The operator o = id A dpy, where id is the identity operator (id(F') = F')
and A denotes the (pointwise) minimum, is an opening, called rank-max
opening: see [4] or [1]. It follows that «y is a decreasing sequence and that
(X1 — Id.

Dually, the operator 5, = id V €p1p9— 18 a closing, the rank-min closing.
The sequence ;. 1s increasing, and (3, = id.

The proposition stated above implies that the compositions (af3), and
(Ba) . are morphological filters. In figure 4 one can see that these filters are
eminently suited for noise cleaning.
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